If 2b=(m+1)a and cosA=12
⎷((m−1)(m+3)m), where 1<m<3, then c1c2 is
A
m or 1m
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(m−1) or 1(m−1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(m+1) or 1(m+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(m+3) or 1(m+3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Am or 1m ∵cosA=b2+c2−a22bc ⇒c2−2bccosA+b2−a2=0 ⇒c2−2(m+1)λccosA+(m2+2m−3)λ2=0 ∵a2=bm+1=λ(say) ∴c1+c2=2(m+1)λcosA or (c1+c2)2=4(m+1)2λ2(m−1)(m+3)4m =(m+1)2(m−1)(m+3)4 .................(1) and (c1−c2)2=(c1+c2)2−4c1c2 =4(m+1)2λ2cos2A−4(m2+2m−3)λ2 =4λ2[(m+1)2(m−1)(m+3)4m−(m+3)(m−1)] =4λ2(m−1)(m+3)(m−1)24m =λ2(m−1)3(m+3)m .............(2) From eqns(1) and (2) (c1+c2c1−c2)2 =((m+1)2(m−1)(m+3)m)×(mλ2(m−1)3(m+3)) =(m+1)2(m−1)2 ⇒c1+c2c1−c2=m+1m−1 or m+11−m At last using the componendo-dividendo rule, we get c1+c2−c1+c2c1+c2+c1−c2=m+1−m+1m+1+m−1 or m+1−1+mm+1+1−m 2c12c2=22m or 2m2 ∴c1c2=1m or m