If 2s=a+b+c, prove that ∣∣
∣
∣∣a2(s−a)2(s−a)2(s−b)2b2(s−b)2(s−c)2(s−c)2c2∣∣
∣
∣∣ =2s3(s−a)(s−b)(s−c).
Open in App
Solution
Let s−a=A,s−b=B,s−c=C. Then A+B+C=3s−(a+b+c)=3s−2s=s B+C=2s−b−c=a,C+A=b,A+B=c ∴Δ=∣∣
∣
∣∣(B+C)2A2A2B2(C+A)2B2C2C2(A+B)2∣∣
∣
∣∣ It is of the form of Q.20. ∴Δ=2ABC(A+B+C)3. =2(s−a)(s−b)(s−c)s3.