If 2sin2θ=3 cosθ,where 0≤θ≤ 2π,then find the value of θ.
2sin2θ=3 cosθ2(1−cos2θ)=3 cosθ [∵sin2θ=1−cos2θ]2−2 cos2θ=3 cos θ⇒2 cos2θ+3 cos θ−2=0⇒2 cos2θ+4 cos θ−cosθ−2=0⇒2 cos θ[cosθ+2]−[cosθ+2]=0⇒(2 cos θ−1)(cos θ+2)=0⇒2 cos θ −1=0 or cosθ=−2∵ θ=π3,5π3