(2x2−3x+1)(2x2+5x+1)=9x2
As x=0 is not a root of the equation, dividing the equation by x2,
(2x+1x−3)(2x+1x+5)=9
Assuming 2x+1x=y,
(y−3)(y+5)=9⇒y2+2y−24=0⇒(y+6)(y−4)=0⇒y=−6,4
Case 1: When y=−6
2x+1x=−6⇒2x2+6x+1=0D=36−8=28>0
Sum of real roots =−62=−3
Case 2: When y=4
2x+1x=4⇒2x2−4x+1=0D=16−8=8>0
Sum of real roots =2
Hence, the absolute value of the sum of all real roots is 1.