The correct option is B 32
2x2+5x+2b=0⇒2x2+5x=−2b⋯(1)2x3+7x2+5x+1=0⇒2x3+5x2+2x2+5x+1=0
Using equation (1), we get
⇒x(−2b)−2b+1=0⇒x=1−2b2b
Putting this in equation (1), we get
2(1−2b2b)2+5(1−2b2b)+2b=0⇒4b2−4b+1+5b−10b2+4b32b2=0⇒4b3−6b2+b+12b2=0⇒(b−1)(4b2−2b−1)2b2=0⇒b=1,4b2−2b−1=0
Therefore, we get three values of b.
The sum of all values of b=1+24=32