If 2x+2y=2x+y, then dydx is equal to
(2x+2y)(2x–2y)
(2x+2y)(1+2x+y)
2x-y(2y-1)(1–2x)
None of these
Explanation for the correct option:
Step 1. Find the value of dydx:
Given, 2x+2y=2x+y
⇒ 2x+2y=2x2y
Step 2. Differentiate it with respect to x
2xlog2+2ylog2dydx=2x2ylog2dydx+2y2xlog2
⇒dydx(2ylog2–2x2ylog2)=2y2xlog2–2xlog2
⇒ dydx2ylog2(1–2x)=2xlog2(2y-1)
⇒ dydx=2xlog2(2y-1)2ylog2(1–2x)=2x(2y-1)2y(1–2x)=2x-y(2y-1)(1–2x)
Hence, Option ‘C’ is Correct.