The correct option is C 4
2x2y2+y2−6x2−12=0
⇒2x2(y2−3)=12−y2
⇒2x2=12−y2y2−3
⇒2x2+1=9y2−3
Now, LHS is an odd positive number for integral values of x.
∴9y2−3 must be an odd positive integer for integral values of y
∴y2=4 is the only possibility.
⇒y=−2,2
∴2x2+1=9
⇒x2=4
⇒x=2,−2
∴ Possible pairs are (2,2),(2,−2),(−2,2),(−2,−2)