If (2x+3)2+(2x−3)2=(8x+6)(x−1)+22, then the value of 'x' is
We have,
(2x+3)2+(2x−3)2=(8x+6)(x−1)+22 [Using:(a+b)2+(a−b)2=2(a2+b2) on LHS]⇒2{(2x)2+32}=x(8x+6)−(8x+6)+22⇒2(4x2+9)=8x2+6x−8x−6+22⇒8x2+18=8x2−2x+16⇒8x2−8x2+2x=16−18⇒2x=−2⇒x=−1Hence, x=−1 is the solution of the given equation