If 2x=3+5i, then the value of 2x3+2x2-7x+72 is
4
-4
8
-8
Explanation for the correct option:
Step 1. Find the value of 2x3+2x2-7x+72:
Given, 2x=3+5i
⇒ x=(3+5i)2
Now, x3=(27+135i-225-125i)8
=(-198+10i)8
x2=(9-25+30i)4
=(-16+30i)4
Step 2. Put the value of x3, x2 and x in the given expression:
2x3+2x2–7x+72=2(-198+10i)8+2(-16+30i)4–7(3+5i)2+72
=-992-8-212+72+104+15-352i
=(-99-16-21+144)2+(10+60-70)4i
=82
=4
Hence, Option ‘A’ is Correct.
Evaluate the following :
(i) 2x3+2x2−7x+72, when x=3−5i2(ii) x4−4x3+4x2+8x+44, when x=3+2i(iii) x4+4x3+6x2+4x+9, when x=−1+i√2(iv) x6+x4+x2+1, when x=1+i√2(v) 2x4+5x3+7x2−x+41, when x=−2−√3i