Let α,β,γ be the roots of the given equation. Then,
α+β+γ=−a2........(i)αβ+βγ+γα=b2........(ii)andαβγ=−2.........(iii)
Since all the coefficient of the given equation are positive, so its all roots are negative. Let α=−α1,β=−β1andγ=−γ1
∴ from (i), (ii),and (iii) we obtain
α1+β1+γ1=a/2........(iv)α1β1+β1γ1+γ1α1=b/2........(v)andα1β1γ1=2.........(vi)NowA.M.≥G.M.⇒α1+β1+γ13≥(α1β1γ1)1/3⇒a6≥21/3⇒a≥6(21/3)........(vii)
AgainA.M.≥G.M.⇒α1β1+β1γ1+γ1α13≥{(α1β1)(β1γ1)(γ1α1)}1/3⇒b≥6(22/3)........(viii)
from (vii) and (viii), we obtain
a+b≥6(21/3+22/3)⇒a+b>6(21/3+41/3)⇒|p−q|=|2−4|∴|p−q|=2