If 2x−3y = 10 and xy=16; find the value of 8x3−27y3
3880
Given that 2x−3y = 10.
Cubing on both sides, we get
(2x−3y)3 = 103
Using the identity, (a−b)3=a3−b3−3ab(a−b)
(2x−3y)3
=(2x)3−(3y)3−3(2x)(3y)(2x−3y)
⇒8x3−27y3−3(2x)(3y)(2x−3y)
=1000
Given that xy=16.
⇒ 8x3−27y3−18(16)(10) = 1000
⇒8x3−27y3−2880 = 1000
⇒ 8x3−27y3 = 3880