The correct option is A (−5,−1)
The equations are
2x−3y−7=0
(a+b)x−(a+b−3)y−(4a+b)=0
Here, a1=2,b1=−3,c1=−7
a2=a+b,b2=−(a+b−3),c2=−(4a+b)
The system of linear equations has infinite solutions
∴a1a2=b1b2=c1c2
⇒2a+b=−3−(a+b−3)=−7−(4a+b)
⇒2a+b=3(a+b−3)
⇒2a+2b−6=3a+3b
⇒b=−a−6
Again, we have
⇒3(a+b−3)=7(4a+b)
⇒12a+3b=7a+7b−21
⇒5a−4b=−21
Putting b=−a−6
⇒5a−4(−a−6)=−21⇒9a=−45
⇒a=−5
Putting a=−5 in b=−a−6
⇒b=−(−5)−6⇒b=−1
⇒a=−5,b=−1