Given: 2X−3Y=[3210]⋯(i) and X+2Y=[0123]⋯(ii)
On multiplying (ii) with 2, we have:
⇒2X−3Y=[3210]⋯(iii) and 2X+4Y=[0246]⋯(iv)
Now, on solving, (iv)−(iii), we have: 7Y=[−3036]
⇒Y=⎡⎢
⎢
⎢⎣−3703767⎤⎥
⎥
⎥⎦
Now, substituting the Y matrix in (ii) we have:
X=[0123]−2Y
⇒X=[0123]−2⎡⎢
⎢
⎢⎣−3703767⎤⎥
⎥
⎥⎦
⇒X=⎡⎢
⎢
⎢⎣6718797⎤⎥
⎥
⎥⎦
Hence we have: 7X=[6789]