The correct option is C 0
Let 5−2x=a,5−3y=b and 5−z=c, then (5−2x)+(5−3y)+(5−z)=a+b+c
⇒15−(2x+3y+z)=a+b+c
⇒15−15=a+b+c ...[∴2x+3y+z=15 (given)]
∴a+b+c=0
Using the result : if a+b+c=0,then
a3+b3+c3−3abc = 0 .....(1)
Put back the values of a,b and c in (1), we get
(5−2x)3+(5−3y)3+(5−z)3−3(5−2x)(5−3y)(5−z)=0
Hence, the value of (5−2x)3+(5−3y)3+(5−z)3−3(5−2x)(5−3y)(5−z) is 0.