If 2x=sec θ and 2x=tan θ then 2(x2−1x2) = ?
(a) 12 (b) 14 (c) 18 (d) 116
Given: 2x=sec θ⇒x=sec θ2
2x=tan θ⇒1x=tan θ2
Now
2[x2−1x2]=2[x2−(1x)2]=2[(sec θ2)2−(tan θ2)2]=2[sec2 θ4−tan2 θ4]=24[sec2 θ−tan2 θ]=12×1=12 (a) 12
If secθ+tanθ=x,then secθ=
Multiply (x + 1) and 2x: