2x=y1/5+y−1/5
On differentiating with respect to x
15⋅y1/5−1⋅y1−15⋅y−1/5−1⋅y1=2⇒15⋅y1/5⋅y1y−15⋅y−1/5⋅y1y=2⇒y1/5−y−1/5=10yy1⇒(y1/5−y−1/5)2=100y2y21⇒(y1/5+y−1/5)2−4=100y2y21⇒4(x2−1)=100y2y21⇒y21(x2−1)=25y2
Again differentiating with respect to x
(x2−1)2y1y2+y212x=25⋅2⋅yy1⇒(x2−1)y2+xy1=25y
or (x2−1)d2ydx2+xdydx=25y
∴k=25