If 2x2-3xy+y2+x+2y-8=0, then dydx is equal to
3y-4x-12y-3x+2
3y+4x+12y+3x+2
3y-4x+12y-3x-2
3y-4x+12y+3x+2
Explanation for the correct option:
Find the value of dydx:
Given, 2x2–3xy+y2+x+2y–8=0
Differentiate it with respect to x.
4x–3xdydx-3y+2ydydx+1+2dydx=0
⇒ dydx(2y-3x+2)=3y–4x–1
⇒ dydx=(3y–4x–1)(2y-3x+2)
Hence, Option ‘A’ is Correct.
If 2x2−3xy+y2+x+2y−8=0 then dydx=