If 2ycosθ=xsinθ and 2xsecθ-ycosecθ=3, then x2+4y2=
4
-4
±4
None of these
Explanation for the correct option:
Step 1: Find the value of x2+4y2:
Given,
2ycosθ=xsinθ ….(i)
Squaring on both sides,
4y2cos2θ=x2sin2θ ….(ii)
Step 2. Again from the given, we get
2xsecθ–ycosecθ=3
⇒ 2xcosθ–ysinθ=3
⇒ 2xsinθ–ycosθ=3sinθcosθ
⇒2xsinθ–xsinθ2=3sinθcosθ ∵Fromi
⇒ 3xsinθ=6sinθcosθ
⇒ x=2cosθ ….(iii)
Step 3. From (ii) and (iii), we get
x2+4y2=(2cosθ)2+(x2sin2θ)cos2θ=4cos2θ+(4cos2θ)sin2θcos2θ=4(cos2θ+sin2θ)[∵cos2θ+sin2θ=1]=4
Hence, Option A is Correct.