wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 32cosx4sinxcos2x+sin2x=0, then x=?(nZ)

Open in App
Solution

Given, 32cosx4sinxcos2x+sin2x=0 32cosx4sinx(2cos2x1)+2sinxcosx=0
44sinx2cosx2cos2x+2sinxcosx=0
22sinx+sinxcosxcosxcos2x=0
2(1sinx)cosx(1sinx)(1sin2x)=0
(1sinx)[2cosx1sinx]=0

1sinx=0 or 1cosxsinx=0 sinx=1 or cosx+sinx=1
sinx=1 or cos(xπ4)=12
x=nπ+(n)n or xπ4=2nπ+π4
x=nπ+(1)nπ2 or 2nπ+π2
​​​​​​​Hence the correct answer is Option a.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Towards Sustainable Development
Watch in App
Join BYJU'S Learning Program
CrossIcon