wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 3+2i sinθ1-2i sinθ is a real number and 0 < θ < 2π, then θ =
(a) π
(b) π2
(c) π3
(d) π6

Open in App
Solution

(a) π

Given:

3 + 2isinθ1 - 2i sinθ is a real number

On rationalising, we get,

3 + 2i sin θ1 - 2i sin θ×1 + 2i sin θ1 + 2i sin θ = (3 + 2i sin θ) (1 + 2i sin θ)(1)2 - (2i sin θ)2=3 + 2i sin θ + 6i sin θ + 4i2 sin2 θ1 + 4 sin2 θ=3 - 4 sin2 θ + 8i sin θ1 + 4sin2 θ i2=-1=3 - 4 sin2 θ 1 + 4sin2 θ+ i8 sin θ1 + 4sin2 θ

For the above term to be real, the imaginary part has to be zero.

8sinθ1+4sin2θ=08sinθ=0

For this to be zero,
sin θ= 0
θ = 0, π, 2π, 3π...
But 0<θ<2π
Hence, θ=π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon