If 3⋅tan−1x=tan−1(3x−x31−3x2), then x belongs to
Consider the given function
3tan−1x=tan−1(3x−x31−3x2)
Let put x=tanθthenθ=tan−1x we get,
3tan−1tanθ=tan−1(3tanθ−tan3θ1−3tan2θ)
⇒3θ=tan−1tan3θ
⇒3θ=3θ
⇒θ=θ
θ=tan−1x
x=tanθ
We know that,
θ∈[−π2,π2] then
x∈(−∞,∞)
Hence,the answer is option ′D′