If 3cosx≠2sinx, then the general solution of sin2x-cos2x=2-sin2x is
nπ+(-1)nπ2,n∈Z
nπ2,n∈Z
4n±1π2,n∈Z
(2n–1),n∈Z
Explanation for the correct option:
Find the general solution of given equation:
Given, sin2x–cos2x=2–sin2x
⇒1–cos2x–(2cos2x–1)–2+sin2x=0 ∵sin2θ+cos2θ=1
⇒ 1–3cos2x+1–2+2sinxcosx=0
⇒ cosx(2sinx–3cosx)=0
⇒ cosx=0,2sinx–3cosx=0
⇒ cosx=0 ∵3cosx≠2sinx
⇒ x=π2
∴x=2nπ±π2=(4n±1)π2,n∈Z
Hence, Option ‘C’ is Correct.