wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 3 cos2θ + 7 sin2θ = 4, show that cot θ = 3.
Or, if tan θ=815, evaluate(2+2sinθ)(1-sinθ)(1+cosθ)(2-2cosθ).

Open in App
Solution

We have:
3cos2θ+ 7sin2θ=4
3cos2θ+3sin2θ+4sin2θ=4
3cos2θ+sin2θ+4sin2θ=4 [ Since cos2θ + sin2θ = 1]
3×1+4sin2θ=4
4sin2θ=1sin2θ=14
cos2θ=1-sin2θ=1-14=34
tan2θ=sin2θcos2θ=14×43=13
tanθ=13cotθ=1tanθ=3

OR
We have:
2+2sinθ1-sinθ1+cosθ2-2cosθ=21+sinθ1-sinθ21+cosθ1-cosθ=1-sin2θ1-cos2θ=cos2θsin2θ=cot2θ=cotθ2
Given that,
tanθ=815cotθ=158
cotθ2=1582=158×158=22564
Hence,
2+2sinθ1-sinθ1+cosθ2-2cosθ=22564

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon