If 3cot A=4, then 1−tan2A1+tan2A=cos2A−sin2A
True
Given 3 cot A=4
⇒cot A=43
tan A=1cot A=34
Now we know that tan A=sin Acos A
∴sin Acos A=34
Also, sin2A+cos2A=1
sin A=3×cos A4
∴(3 cos A4)2+cos2A=1
cos2A(1+(34)2)=1
cos2A(1+916)=1
cos2A(2516)=1
cos2A=1625
∴cos A=√1625=45
sin A=tan A×cos A⇒sin A=34×45⇒sin A=35
Now, LHS = 1−tan2A1+tan2A
=1−(34)21+(34)2
=1−9161+916
=7162516
=725
RHS = cos2A−sin2A
=(45)2−(35)2
=1625−925
=725
∴LHS=RHS