If √3+i=(a+ib)(c+id), then tan-1ba+tan-1dc has the value
π3+2nπ,n∈I
nπ+π6,n∈I
nπ-π3,n∈I
2nπ-π3,n∈I
Explanation for the correct option:
Step 1: Solve √3+i=(a+ib)(c+id)
Given, √3+i=(a+ib)(c+id)
⇒ √3+i=ac-bd+i(bc+ad)
⇒ ac–bd=√3,bc+ad=i
Step 2: Using the formula tan-1A+tan-1B=tan-1(A+B1-AB)
tan-1ba+tan-1dc=tan-1ba+dc1-badc=tan-1(bc+ad)ac(ac–bd)ac=tan-1bc+adac–bd=tan-11√3=π6
∴x=nπ+(π6),n∈I
Hence, Option 'B' is Correct.