If 3(sec2θ+tan2θ)=5, then the general value of θ is
2nπ+π6
2nπ±π6
nπ±π6
nπ±π3
Explanation for correct option:
Given, 3(sec2θ+tan2θ)=5
⇒ sec2θ+tan2θ=53
⇒ 1cos2θ+sin2θcos2θ=53
⇒ 1+sin2θcos2θ=53
Using the identity sin2A+cos2A=1,
3(1+1–cos2θ)=5cos2θ
⇒ 6–3cos2θ=5cos2θ
⇒5cos2θ+3cos2θ=6
⇒ 8cos2θ=6
⇒ cos2θ=34
⇒ cosθ=±32
⇒ cosθ=±cosπ6
∴θ=nπ±π6
Hence, The correct answer is option (C).
If cosθ+secθ=52, then the general value of θ is