If 3sinA+5cosA=5, then the value of (3cosA-5sinA)2 is
4
5
2
9
Explanation for the correct option:
Step 1. Find the value of (3cosA-5sinA)2:
Given, 3sinA+5cosA=5 …(1)
Let 3cosA–5sinA=x …(2)
Step 2. square and add equation (1) and (2),
9sin2A+25cos2A+30sinAcosA+9cos2A+25sin2A–30sinAcosA=25+x2
⇒ 9(sin2A+cos2A)+25(sin2A+cos2A)=25+x2
⇒ 9+25=25+x2
⇒ x2=9
∴(3cosA–5sinA)2=9
Hence, Option ‘D’ is Correct.
Evaluate :cos48°-sin42°