We have,
3sinθ+4cosθ=5 ………. (1)
On squaring both sides, we get
(3sinθ+4cosθ)2=52
9sin2θ+16cos2θ+24sinθcosθ=25
9(1−cos2θ)+16(1−sin2θ)+12×2sinθcosθ=25
9−9cos2θ+16−16sin2θ+12×2sinθcosθ=25
25−9cos2θ−16sin2θ+12×2sinθcosθ=25
9cos2θ+16sin2θ−12×2sinθcosθ=0
(3cosθ−4sinθ)2=0
3cosθ−4sinθ=0
Hence, the value is 0.