If 3sinθ+4cosθ=5, then the value of 4sinθ−3cosθ is
A
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D0 3sinθ+4cosθ=5
Squaring both sides, we get 9sin2θ+16cos2θ+24sinθcosθ=25⇒9(1−cos2θ)+16(1−sin2θ)+24sinθcosθ=25⇒25−9cos2θ−16sin2θ+24sinθcosθ=25⇒9cos2θ+16sin2θ−24sinθcosθ=0⇒(4sinθ−3cosθ)2=0∴4sinθ−3cosθ=0
Alternate method: 3sinθ+4cosθ=5
Let 4sinθ−3cosθ=x
Squaring and adding both the equation, we get 9+16=25+x2⇒x=0∴4sinθ−3cosθ=0