If 3sinθ+4cosθ=5, then the value of sinθ is
35
Given, 3sinθ+4cosθ=5.......(1)Squaring both sides, we have:(3sinθ+4cosθ)2=(5)2⇒9sin2θ+16cos2θ+24sinθcosθ=25⇒9(1−cos2θ)+16(1−sin2θ)+24sinθcosθ=25⇒9−9cos2θ+16−16sin2θ+24sinθcosθ=25⇒16sin2θ+9cos2θ−24sinθcosθ=0⇒(4sinθ−3cosθ)2=0⇒4sinθ−3cosθ=0......(2)Solving (1) and (2),sinθ=35