If 3sinθ+5cosθ=5, then 5sinθ-3cosθis equal to
4
±3
5
None of these
Step 1. Finding the value of 5sinθ-3cosθ:Given,
3sinθ+5cosθ=5...(i)
Let 5sinθ–3cosθ=p...(ii)
Step 2. Squaring and adding (i) and (ii), we get
9sin2θ+25cos2θ+30sinθcosθ+25sin2θ+9cos2θ–30sinθcosθ=25+p2
⇒ 9(sin2θ+cos2θ)+25(cos2θ+sin2θ)=25+p2
⇒ 9+25=25+p2
⇒ p2=9
∴p=±3
Hence, the correct answer is option (B).
If 3tanθ=5, then 3sinθ−5cosθ3sinθ+5cosθ is equal to
If 3sinθ + 5 cosθ = 5 then value of sinθ - 3 cosθ is equal to