If 3sin(xy)+4cos(xy)=5, then dydx=
-yx
yx
xy
none of these
Explanation for correct option:
Finding the value of dydx:Given 3sin(xy)+4cos(xy)=5
Differentiate with respect to x
3cosxyddx(xy)–4sin(xy)ddx(xy)=0
⇒ [3cosxy–4sin(xy)]ddx(xy)=0
⇒ [3cosxy–4sin(xy)](xdydx+y)=0
⇒ dydxx[3cosxy–4sin(xy)]=-y[3cosxy–4sin(xy)]
⇒ dydx=-y[3cosxy–4sin(xy)]x[3cosxy–4sin(xy)]=-yx
Hence, option (A) is the correct answer.
Evaluate :cos48°-sin42°