If 3tan2Atan2B=1, then (2−cos2A)(2−cos2B)=
(2−cos2A)(2−cos2B)=(1+3tan2A1+tan2A)(1+3tan2B1+tan2B) =1+3(tan2A+tan2B)+9tan2Atan2B1+tan2A+tan2B+tan2Atan2B =4+3(tan2A+tan2B)43+tan2A+tan2B=3
In ΔABC,∠C=2π3, then the value of cos2A+cos2B−cosA.cosB=___