wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 3 tan θ = 4, show that 4cosθ-sinθ2cosθ+sinθ=45.

Open in App
Solution

Let us consider a right ABC right angled at B and C=θ.
We know that tan θ = ABBC = 43

So, if BC = 3k, then AB = 4k, where k is a positive number.
Using Pythagoras theorem, we have:
AC2 = AB2 + BC2
⇒ AC2 = 16k2 + 9k2
⇒ AC2 = 25k2
⇒ AC = 5k

Now, we have:

sin θ = ABAC = 4k5k = 45

cos θ = BCAC = 3k5k = 35

Substituting these values in the given expression, we get:

4 cosθ - sinθ2 cosθ + sinθ= 435 - 45235 + 45=125-4565+45= 12 - 456 + 45= 810= 45 = RHS
i.e., LHS = RHS

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Values of Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon