If 3 tan θ=4, show that (4cosθ−sinθ)(2cosθ+sinθ)=45
3tan θ=4tan θ=43tanθ=Opposite sideAdjacent sideOpposite side=4Adjacent side=3Hypotenuse=√(Opposite side)2+(Adjacent side)2=√42+32=√16+9=√25=5Hypotenuse=5
sinθ=Opposite sideHypotenuse side=45cosθ=Adjacent sideHypotenuse side=35
(4cosθ−sinθ)(2cosθ+sinθ)=4×35−452×35+45=125−4565+45=85105=810=45
Hence proved