If 3tanθ+cotθ=5cosec θ, then θ=
3sinθcosθ+cosθsinθ=5sinθ
⇒sinθ(3sin2θ+cos2θ)=5sinθ cosθ
⇒3(1−cos2θ)+cos2θ=5cosθ
⇒2cos2θ+5cosθ−3=0
⇒2cosθ(cosθ+3)−1(cosθ+3)=0
⇒(cosθ+3)(2cosθ−1)=0
⇒cosθ=−3 or cosθ=12
Now, cosθ=−3 is not possible as cosθ≤1
Hence, cosθ=12⇒θ=60∘