If 3a+5b+4c=0, show that:
27a3+125b3+64c3=180abc.
We know that
(a+b+c)3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
If (a+b+c)=0, then a3+b3+c3=3abc
Given, 3a+5b+4c=0
Now,
L.H.S =27a3+125b3+64c3
=(3a)3+(5b)3+(4c)3
=3(3a)(5b)(4c)
=180abc
=R.H.S