Given that,3A=⎡⎢⎣12221−2x2y⎤⎥⎦
⇒A=⎡⎢
⎢
⎢⎣1323232313−23x323y3⎤⎥
⎥
⎥⎦ [0.5 Mark]
∴AT=⎡⎢
⎢
⎢⎣1323x323132323−23y3⎤⎥
⎥
⎥⎦ [0.5 Mark]
AAT=I⇒⎡⎢
⎢
⎢⎣1323232313−23x323y3⎤⎥
⎥
⎥⎦⋅⎡⎢
⎢
⎢⎣1323x323132323−23y3⎤⎥
⎥
⎥⎦=⎡⎢⎣100010001⎤⎥⎦⇒⎡⎢
⎢
⎢
⎢⎣19+49+4929+29−49x9+49+2y929+29−4949+19+492x9+29−2y9x9+49+2y92x9+29−2y9x29+49+y29⎤⎥
⎥
⎥
⎥⎦=⎡⎢⎣100010001⎤⎥⎦⇒x2+y2+4=9⇒x2+y2=5 ...(1)
⇒2x+2−2y=0⇒y=x+1 ...(2)
⇒x+4+2y=0⇒x+2y=−4 ...(3)
Solving Equations (1) and (2)
x2+(x+1)2=5⇒x2+x2+2x+1=5⇒x2+x−2=0⇒x=−2,1⇒(x,y)≡(1,2),(−2,−1)
Satisfying these in Equation (3)
(−2)+2(−1)=−4(1)+2(2)≠−4
Hence, (−2,−1) satisfies.
So x+y=−3. [2 Marks]