If 3π/4<α<π, then (cosec2α+2cotα)is equal to
1+cotα
1–cotα
-1–cotα
-1+cotα
To find the value for (cosec2α+2cotα):
Using the identity
cosec2A–cot2A=1cosec2A=cot2A+1
√(cosec2α+2cotα)=√[1+cot2α+2cotα]=√(1+cotα)2=|1+cotα|
Given that 3π4<α<π.
In this interval cotαis negative.
Therefore, |1+cotα|=-1–cotα.option (C) is correct.
If 3π4<α<π then, √2cotα+1sin2α is equal to
If 3π4<α<π, then √cosec2α+2cotα is equal to