wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 3rd, 4th, 5th and 6th terms in the expansion of (x+α)n be respectively a,b,c and d. prove that b2acc2bd=5a3c.

Open in App
Solution

Given expansion is (x+α)n

Then,

T3=a=nC2xn2α2=n(n1)2xn2α2

T4=b=nC3xn3α3=n(n1)(n2)6xn3α3

T5=c=nC4xn4α4=n(n1)(n2)(n3)24xn4α4

T6=d=nC5xn5α5=n(n1)(n2)(n3)(n4)120xn5α5

Now

T4T3=ba=n(n1)(n2)6xn3α3n(n1)2xn2α2=(n23)αx....(1)

Similarly,

T5T4=cb=n(n1)(n2)(n3)24xn4α4n(n1)(n2)6xn3α3=(n34)αx.......(2)

and

T6T5=dc=n(n1)(n2)(n3)(n4)120n(n1)(n2)(n3)24xn4α4=(n45).αx........(3)

Again, dividing (1)by (2) and (2)by (3), we get

=baca=(n23).αx(n34).αx=4(n2)3(n3)

=b2ac=4(n2)3(n3).....(4)

and

=cbdc=(n34).αx(n45).αx=5(n3)4(n4)=c2bc=5(n3)4(n4)........(5)

Now subtact 1 from both sides of equation (4) and (5)as:

=b2ac1=4(n2)3(n3)1

b2acac=n+13(n3).....(6)

and

c2bd1=5(n3)4(n4)1

c2bdbd=n+14(n4)......(7)

Again, on dividing (6) by (7), we get

b2acacc2bdbd=(n+1)3(n3)(n+1)4(n4)

b2acc2bd×bdac=4(n4)3(n3).....(8)

On multiplying (5)by (8)

b2acc2bd×bdac×c2bd=4(n4)3(n3)×5(n3)4(n4)b2acc2bd.ca=53b2acc2bd=5a3c

Hence, proved.


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Visualising the Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon