If 3rd, 4th, 5th and 6th terms in the expansion of (x+α)n be respectively a,b,c and d. prove that b2−acc2−bd=5a3c.
Given expansion is (x+α)n
Then,
T3=a=nC2xn−2α2=n(n−1)2xn−2α2
T4=b=nC3xn−3α3=n(n−1)(n−2)6xn−3α3
T5=c=nC4xn−4α4=n(n−1)(n−2)(n−3)24xn−4α4
T6=d=nC5xn−5α5=n(n−1)(n−2)(n−3)(n−4)120xn−5α5
Now
T4T3=ba=n(n−1)(n−2)6xn−3α3n(n−1)2xn−2α2=(n−23)αx....(1)
Similarly,
T5T4=cb=n(n−1)(n−2)(n−3)24xn−4α4n(n−1)(n−2)6xn−3α3=(n−34)αx.......(2)
and
T6T5=dc=n(n−1)(n−2)(n−3)(n−4)120n(n−1)(n−2)(n−3)24xn−4α4=(n−45).αx........(3)
Again, dividing (1)by (2) and (2)by (3), we get
=baca=(n−23).αx(n−34).αx=4(n−2)3(n−3)
=b2ac=4(n−2)3(n−3).....(4)
and
=cbdc=(n−34).αx(n−45).αx=5(n−3)4(n−4)=c2bc=5(n−3)4(n−4)........(5)
Now subtact 1 from both sides of equation (4) and (5)as:
=b2ac−1=4(n−2)3(n−3)−1
⇒b2−acac=n+13(n−3).....(6)
and
c2bd−1=5(n−3)4(n−4)−1
c2−bdbd=n+14(n−4)......(7)
Again, on dividing (6) by (7), we get
b2−acacc2−bdbd=(n+1)3(n−3)(n+1)4(n−4)
b2−acc2−bd×bdac=4(n−4)3(n−3).....(8)
On multiplying (5)by (8)
⇒b2−acc2−bd×bdac×c2bd=4(n−4)3(n−3)×5(n−3)4(n−4)⇒b2−acc2−bd.ca=53⇒b2−acc2−bd=5a3c
Hence, proved.