If 3sinθ + 5 cosθ = 5 then value of sinθ - 3 cosθ is equal to
5
3
4
1
3sinθ = 5(1 - cosθ) = 5 × 2sin2 θ2
⇒ tan θ2 = 35
Now 5sinθ - 3cosθ = 5×2tanθ21+tan2θ2 - 3 (1−tan2θ2)1+tan2θ2
= 5 × 2×351+95 - 3 × 1−9251+925 = 3
If 3tanθ=5, then 3sinθ−5cosθ3sinθ+5cosθ is equal to