If 3tan−1 x+cot−1 x=π, then x equals to
(a) 0 (b) 1 (c) −1 (d) 12
(b) Given that, 3tan−1 x+cot−1 x=π,
⇒ 2tan−1 x+tan−1 x+cot−1 x=π ⋯(i)⇒ 2tan−1 x=π−π2 [∵ tan−1 x+cot−1 x=π2]⇒ 2tan−1 x=π2⇒ tan−12x1−x2=π2 [∵ 2tan−1 x=tan−12x1−x2, ∀ x ∈(−1, 1)]⇒ 2x1−x2=tanπ2⇒ 2x1−x2=10 ⇒ 1−x2=0⇒ x2=1 ⇒ x=± 1 ⇒ x=1
Hence, only x=1 satisfies the given equation.
Note Here, putting x=−1 in the given equation, we get
3tan−1(−1)+cot−1(−1)=π⇒ 3tan−1[tan(−π4)]+cot−1[cot(π4)]=π⇒ 3tan−1(−tantπ4)+cot−1(−cotπ4)=π⇒ −3tan−1(tanπ4)+π−cot−1(cotπ4)=π⇒ −3.π4+π−π4=π⇒ −π+π=π ⇒ 0≠π
Hence, x=−1 does not satisfy the given equation.