wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 3tan1 x+cot1 x=π, then x equals to

(a) 0 (b) 1 (c) 1 (d) 12

Open in App
Solution

(b) Given that, 3tan1 x+cot1 x=π,

2tan1 x+tan1 x+cot1 x=π (i) 2tan1 x=ππ2 [ tan1 x+cot1 x=π2] 2tan1 x=π2 tan12x1x2=π2 [ 2tan1 x=tan12x1x2, x (1, 1)] 2x1x2=tanπ2 2x1x2=10 1x2=0 x2=1 x=± 1 x=1

Hence, only x=1 satisfies the given equation.

Note Here, putting x=1 in the given equation, we get

3tan1(1)+cot1(1)=π 3tan1[tan(π4)]+cot1[cot(π4)]=π 3tan1(tantπ4)+cot1(cotπ4)=π 3tan1(tanπ4)+πcot1(cotπ4)=π 3.π4+ππ4=π π+π=π 0π

Hence, x=1 does not satisfy the given equation.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon