If 3X + 2Y = I and 2X - Y = O, where I and O are unit and null matrices of order 3 respectively, then
X=(17)I,Y=(27)
X=(27),Y=(17)I
X=(17)I,Y=(27)I
X=(27)I,Y=(17)I
3X+2Y=I2X−Y=0⇒3X+2Y=I4X−2Y=0⇒7X=IX=17I (Solving simultaneously) Therefore from (i), 2Y=I−37I=47I⇒Y=27I