The correct option is
C 316Given,
3x+4y=5⟹3x=5−4y⟹x=5−4y3substituting x=5−4y3 in x2y3
x2y3⟹(5−4y3)2y3
taking the derivative and equating to zero.
⟹2(5−4y3)y3(−43)+3y2(5−4y3)2=0
⟹y2(5−4y)3(−83y+(5−4y))=0
⟹y2=0 and (5−4y)=0 and (−203y+5)=0
⟹y=0 and y=54 and y=34
Substituting y=0⟹x=5−4(0)3=53
Substituting y=54⟹x=5−4(5/4)3=0
Substituting y=34⟹x=5−4(3/4)3=23
therefore, substituting y=0 and x=53⟹x2y3=0
substituting y=54 and x=0⟹x2y3=0
substituting y=34 and x=23⟹x2y3=(23)2(34)3=316
therefore, the greatest value is 316