Given lines,
L1:3x+4y+λ−3=0,
L2:3x+4y+λ+3=0
and circle
x2+y2+6x+10y+30=0
C≡(−3,−5)r=√(−3)2+(−5)2−30=2
The perpendicular distance from the centre of the circle to the line L1 is
p1=|3×−3+4×−5+λ−3|√32+42⇒p1=|λ−32|5
As this is chord, so
p1<r⇒|λ−32|5<2⇒|λ−32|<10⇒−10<λ−32<10⇒22<λ<42 ⋯(1)
The perpendicular distance from the centre of the circle to the line L2 is
p2=|3×−3+4×−5+λ+3|√32+42⇒p2=|λ−26|5
This is a chord, so
p2<r⇒|λ−26|5<2⇒|λ−26|<10⇒−10<λ−26<10⇒16<λ<36 ⋯(2)
From equation (1) and 2, we get
⇒22<λ<36
Hence, the total number of integral values is 13.