Solution:
The given equations are,
3x + 5y = 9 ....(1)
5x + 3y = 7 ....(2)
Multiply equation (1) by 5 and equation (2) by 3, we get;
15x + 25y = 45 ...(3)
15x + 9y = 21 ...(4) [1 Mark]
Subtracting (4) from (3)
15x + 25y = 45
15x + 9y = 21
− − − ––––––––––––––––––
16y = 24
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
∴ y = 2416 = 32.
[1 Mark]
Putting y = 32 in equation (1), we get
3x + 5(32) = 9
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
⇒ 3x + 152 = 9
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
⇒ 3x = 9 - 152
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
⇒ 3x = 32
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
⇒ x = 12 [1 Mark]
Thus, x + y = 32 + 12 = 3+12 = 42 = 2. [1 Mark]