If 3x+13x=3; find :(i)9x2+19x2(ii)27x3+127x3
(i) 3x+13x=3⇒(3x+13x)2=(3)2⇒(3x+13x)2=(3)2⇒(3x)2+(13x)2+2×3x×13x=9⇒9x2+19x2+2=9⇒9x2+19x2=9−2⇒9x2+19x2=7.
(ii) 3x+13x=3⇒(3x+13x)3=(3)3⇒(3x)3+(13x)3+3×3x×(3x+13x)=27⇒27x3+127x3+3(3)=27⇒27x3+127x3=27−9⇒27x3+127x3=18.