If (3x)log3=(4y)log4 and (4)logx=(3)logy, then x equals
1/3
(3x)log3=(4y)log4log3 log33x=log4 log34ylog43(log33+log3x)=log34+log3y →(1)4logx=3logylogx.log4=logy.log3log3x=log4y →(2)(2) in (1)log43 (1+log4y)=log34+log4y log34log43 (1+log4y)=log34(1+log4y)(log43−log34)(1+log4y)=0log4y=−1=log3xx=3−1x=13