Using p=r, we get r=√(5/2).
Any line through origin is y=mx.
If it is a tangent to (2,−1),√(5/2), then using p=r,
we get
2m+1√(m2+1)=√52. Square
2(4m2+4m+1)=5(m2+1)
or 3m2+8m−3=0
or (m+3)(3m−1)=0
∴m=−3,1/3 where −3 corresponds to given tangent.
Hence the other tangent is y=13x or x−3y=0.