We know that,
If x+y+z=0
then,
x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)
⇒x3+y3+z3−3xyz=0×(x2+y2+z2−xy−yz−zx)
⇒x3+y3+z3−3xyz=0
Now, given that
If 3x+y+z=0
then,
(3x)3+y3+z3−3×3xyz=(3x+y+z)((3x)2+y2+z2−xy−yz−zx)
⇒27x3+y3+z3−9xyz=0×(9x2+y2+z2−xy−yz−zx)
⇒x3+y3+z3=9xyz
Hence, this is the answer.